INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & MANAGEMENT

DOUBLE DIRICHLET AVERAGE OF NEW GENERALIZATION OF GENERALIZED M-SERIES AND RIEMANN-LIOUVILLE FRACTIONAL INTEGRAL

Manoj Sharma

* Department of Mathematics RJIT, BSF Academy, Tekanpur

ABSTRACT

In this paper we establish the results of Double Dirichlet average of a new Special function called as New generalization of Generalized M-series [17] which is recently given by Ahmad Faraj, Tariq Salim, Safaa Sadek, Jamal Ismai [10], using fractional derivative has been obtained. This series is a particular case of Fox's H-function and it is a Generalized case of Generalized M-series [6] defined by the Author. The New Generalized M-series is interesting because the $_p F_q$ -hyper geometric function and the Generalized M-Series follow as its particular cases and these functions have recently found essential applications in solving problems in physics, biology, engineering and applied sciences.

Mathematics Subject Classification: 26A33, 33A30, 33A25 and 83C99.

Keywords: Dirichlet average, New generalization of Generalized M-series, Fractional calculus operators.

INTRODUCTION

Carlson [1-5] has defined Dirichlet average of functions which represents certain type of integral average with respect to Dirichlet measure. He showed that various important special functions can be derived as Dirichlet averages for the ordinary simple functions like x^t , e^x etc. He has also pointed out [3] that the hidden symmetry of all special functions which provided their various transformations can be obtained by averaging x^n , e^x etc. Thus he established a unique process towards the unification of special functions by averaging a limited number of ordinary functions. Almost all known special functions and their well-known properties have been derived by this process.

Recently, Gupta and Agarwal [9, 10] found that averaging process is not altogether new but directly connected with the old theory of fractional derivative. Carlson overlooked this connection whereas he has applied fractional derivative in so many cases during his entire work. Deora and Banerji [6] have found the double Dirichlet average of e^x by using fractional derivatives and they have also found the Triple Dirichlet Average of x^t by using fractional derivatives [7].

In the present paper the Double Dirichlet average of new generalization of Generalized M-series has been obtained.

DEFINITIONS

Some definitions which are necessary in the preparation of this paper.

Standard Simplex in \mathbb{R}^n , $n \ge 1$

The standard simplex in \mathbb{R}^n , $n \ge 1$ by [1, p.62]. $E = E_n = \{S(u_1, u_2, \dots, u_n) : u_1 \ge 0, \dots, u_n \ge 0, u_1 + u_2 + \dots + u_n \le 1\}$

Dirichlet measure

Let $b \in C^k$, $k \ge 2$ and let $E = E_{k-1}$ be the standard simplex in R^{k-1} . The complex measure μ_b is defined by E[1]. $d\mu_b(u) = \frac{1}{B(b)} u_1^{b_1-1} \dots \dots \dots u_{k-1}^{b_{k-1}-1} (1 - u_1 - \dots - u_{k-1}) b_k^{-1} du_1 \dots \dots \dots du_{k-1}$ Will be called a Dirichlet measure.

Here

$$B(b) = B(b1, \dots, bk) = \frac{\Gamma(b_1) \dots \dots \Gamma(b_k)}{\Gamma(b_1 + \dots + b_k)},$$

$$C_{>} = \left\{ z \in z : z \neq 0, |ph z| < \frac{\pi}{2} \right\},$$

Open right half plane and $C_>k$ is the k^{th} Cartesian power of $C_>$

ISSN: 2277-5528 Impact Factor: 2.745 (SIJF)

Dirichlet Average[1, p.75]

Let Ω be the convex set in $C_>$, let $z = (z_1, \dots, z_k) \in \Omega^k$, $k \ge 2$ and let u.z be a convex combination of z_1, \dots, z_k . Let f be a measureable function on Ω and let μ_b be a Dirichlet measure on the standard simplex E in \mathbb{R}^{k-1} . Define

$$F(b,z) = \int_{E} f(u,z) d\,\mu_{b}(u)$$
(2.3)

F is the Dirichlet measure of f with variables $z = (z_1, \dots, z_k)$ and parameters $b = (b_1, \dots, b_k)$. Here

$$u.z = \sum_{i=1}^{k} u_i z_i \text{ and } u_k = 1 - u_1 - \dots - u_{k-1}$$

If $k = 1$, define $F(b, z) = f(z)$.

Fractional Derivative [8, p.181]

The theory of fractional derivative with respect to an arbitrary function has been used by Erdelyi [8]. The general definition for the fractional derivative of order α found in the literature on the "Riemann-Liouville integral" is

$$D_{z}^{\alpha}F(z) = \frac{1}{\Gamma(-\alpha)} \int_{0}^{z} F(t)(z-t)^{-\alpha-1} dt$$
 (2.4)

Where $Re(\alpha) < 0$ and F(x) is the form of $x^p f(x)$, where f(x) is analytic at x = 0.

Average of function $M_{p,q;m,n}^{\alpha,\beta}(z)$ (from [4])

let μ^b be a Dirichlet measure on the standard simplex E in \mathbb{R}^{k-1} ; $k \ge 2$. For every $z \in \mathbb{C}^k$

$$S(b,z) = \int_{E} \int_{p,q;m,n}^{\alpha,\beta} (\mathbf{u}.\mathbf{z}) d\mu_b (\mathbf{u})$$
(2.5)

If
$$k = 1, S = (b, z) = \bigwedge_{p,q;m,n}^{\alpha,\beta} (\mathbf{u}.\mathbf{z}).$$

Double averages of functions of one variable (from [1, 2])

let z be a $k \times x$ matrix with complex elements z_{ij} . Let $u = (u_1, \dots, u_k)$ and $v = (v_1, \dots, v_k)$ be an ordered k-tuple and x-tuple of real non-negative weights $\sum u_i = 1$ and $\sum v_j = 1$, respectively. We define

$$u.z.v = \sum_{i=1}^{k} \sum_{j=1}^{x} u_i z_{ij} v_j$$
(2.6)

If z_{ij} is regarded as a point of the complex plane, all these convex combinations are points in the convex hull of (z_{11}, \dots, z_{kx}) , denote by H(z).

Let $b = (b_1, \dots, b_k)be$ an ordered k -tuple of complex numbers with positive real part(Re(b) > 0) and similarly for $\beta = (\beta_{1,\dots,\beta_k})$. Then we define $d\mu_b(u)$ and $d\mu_b(v)$.

Let *f* be the holomorphic on a domain D in the complex plane, If
$$Re(b) > 0, Re(\beta) > 0$$
 and $H(z) \subset D$, we define

$$F(b, z, \beta) = \iint f(u, z, v) d\mu_b(u) d\mu_b(v)$$
(2.7)

The New Generalized M-Series

Here, first the notation and the definition of the New Generalized M-series, introduced by Ahmad Faraj, Tariq Salim, Safaa Sadek, Jamal Ismai [10] has been given as

...(2.8)

Here $\alpha, \beta \in C$, Re (α) > 0, Re (β) > 0, (a_j)_{km}, (b_j)_{kn} are the pochammer symbols and m,n are non-negative real numbers.

MAIN RESULTS AND PROOF

Theorem: Following equivalence relation for Double Dirichlet Average is established for (k = x = 2) of $\stackrel{\alpha,\beta}{M}(u,z,v)$

$$\overset{\alpha,\beta}{\underset{p,q;m,n}{M}}(\mu,\mu';x;\rho,\rho') = \frac{\Gamma(\rho+\rho')}{\Gamma\rho}(x-y)^{1-\rho-\rho'}D_{x-y}^{-\rho'} \overset{\alpha,\beta}{\underset{p,q;m,n}{M}}(x)(x-y)^{\rho-1}$$
(3.1)

Proof:

Let us consider the double average for (k = x = 2) of $M_{p,q;m,n}^{\alpha,\beta}$ (*u.z.v*)

$$\begin{split} & \bigwedge_{p,q;m,n}^{\alpha,\beta} (\mu,\mu';z;\rho,\rho') = \\ & \int_{0}^{1} \int_{0}^{1} \int_{p,q;m,n}^{\alpha,\beta} (u.z.v) \, dm_{\mu,\mu'}(u) \, dm_{\rho,\rho'}(v) \\ & = \int_{0}^{1} \int_{0}^{1} \int_{p,q;m,n}^{\alpha,\beta} [u.z.v] \, dm_{\mu,\mu'}(u) \, dm_{\rho,\rho'}(v) \\ & Re(\mu) = 0, Re(\mu') = 0, Re(\rho) > 0, Re(\rho') > 0 \text{ and} \\ & u.z.v = \sum_{l=1}^{2} \sum_{i=1}^{2} (u_i z_{ij} v_j) = \sum_{l=1}^{2} [u_i(z_{i1}v_1 + z_{i2}v_2)] \\ & = [u_1 z_{11} v_1 + u_1 z_{12} v_2 + u_2 z_{21} v_1 + u_2 z_{22} v_2] \\ & \text{let } z_{11} = a, z_{12} = b, z_{21} = c, z_{22} = d \text{ and } \begin{cases} u_1 = u, & u_2 = 1 - u \\ v_1 = v, & v_2 = 1 - v \end{cases} \\ & \text{Thus } z = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \\ & v.z.v = uva + ub(1 - v) + (1 - u)cv + (1 - u)d(1 - v) \\ & = uv(a - b - c + d) + u(b - d) + v(c - d) + d \\ & dm_{\mu,\mu'}(u) = \frac{\Gamma(\mu + \mu')}{\Gamma\mu \Gamma\mu'} u^{\mu-1}(1 - u)^{\mu'-1} du \end{split}$$

$$dm_{\rho,\rho'}(v) = \frac{\Gamma(\rho+\rho')}{\Gamma\rho\Gamma\rho'}v^{\rho-1}(1-v)^{\rho'-1}dv$$

Putting these values in (3.1), we have,

$$\overset{\alpha,\beta}{\underset{p,q;m,n}{M}}(\mu,\mu';z;\rho,\rho') = \frac{\Gamma(\mu+\mu')}{\Gamma\mu}\frac{\Gamma(\rho+\rho')}{\Gamma\rho\Gamma\rho'} \times \int_{0}^{1} \int_{0}^{1} \int_{p,q;m,n}^{\alpha,\beta} [uv(a-b-c+d)+u(b-d)+v(c-d)+d]u^{\mu-1}(1-u)^{\mu'-1}v^{\rho-1}(1-v)^{\rho'-1}dudv] + u(b-d) + u(b-d$$

In order to obtained the fractional derivative equivalent to the above integral, we assume a = c = x; b = d = y then α, β

$$\frac{M}{p,q;m,n}(\mu,\mu';z;\rho,\rho') = \frac{\Gamma(\mu+\mu')}{\Gamma\mu\Gamma\mu'}\frac{\Gamma(\rho+\rho')}{\Gamma\rho\Gamma\rho'} \times \int_{0}^{1} \int_{0}^{1} \frac{\alpha,\beta}{p,q;m,n} [v(x-y)+y] u^{\mu-1}(1-u)^{\mu'-1}v^{\rho-1}(1-v)^{\rho'-1}dudv$$

$$\overset{\alpha,\beta}{\underset{p,q;m,n}{M}}(\mu,\mu';z;\rho,\rho') = \frac{\Gamma(\rho+\rho')}{\Gamma\rho\Gamma\rho'} \times \int_{0}^{1} \overset{\alpha,\beta}{\underset{p,q;m,n}{M}} [v(x-y)+y] v^{\rho-1}(1-v)^{\rho'-1} dv$$

Putting v(x - y) = t, we obtain

$$\begin{split} & \stackrel{\alpha,\beta}{\underset{p,q;m,n}{M}}(\mu,\mu';z;\rho,\rho') = \frac{\Gamma(\rho+\rho')}{\Gamma\rho\Gamma\rho'} \times \int_{0}^{x-y} \bigwedge_{p,q;m,n}^{\alpha,\beta} [y+t] \left(\frac{t}{x-y}\right)^{\rho-1} \left(1-\frac{t}{x-y}\right)^{\rho'-1} \frac{dt}{(x-y)} \\ &= \frac{\Gamma(\rho+\rho')}{\Gamma\rho\Gamma\rho'} (x-y)^{1-\rho-\rho'} \int_{0}^{x-y} \bigwedge_{p,q;m,n}^{\alpha,\beta} [y+t] (t)^{\rho-1} (x-y-t)^{\rho'-1} dt \end{split}$$

On changing the order of integration and summation, we have

$$\prod_{p,q;m,n}^{\alpha,\beta} (\mu,\mu';z;\rho,\rho') = \frac{\Gamma(\rho+\rho')}{\Gamma\rho\Gamma\rho'} (x-y)^{1-\rho-\rho'} \int_{0}^{x-y} M_{p,q;m,n}^{\alpha,\beta} [y+t] (t)^{\rho-1} (x-y-t)^{\rho'-1} dt$$

Using definition of fractional derivative (2.4), we get

$$\begin{split} & \stackrel{\alpha,\beta}{\underset{p,q;m,n}{M}}(\mu,\mu';z;\rho,\rho') = \\ & \frac{\Gamma(\rho+\rho')}{\Gamma\rho}(x-y)^{1-\rho-\rho'}D_{x-y}^{-\rho'} \quad \stackrel{\alpha,\beta}{\underset{p,q;m,n}{M}}(x) \; (x-y)^{\rho-1} \end{split}$$

This is complete proof of (3.1).

ACKNOWLEDGEMENT

Authors are grateful to referee for his valuable comment and improvement upon the paper.

REFERENCE

- 1. Carlson, B.C., Special Function of Applied Mathematics, Academic Press, New York, 1977.
- 2. Carlson, B.C., Appell's function F4 as a double average, SIAM J. Math. Anal.6 (1975), 960-965.
- 3. Carlson, B.C., Hidden symmetries of special functions, SIAM Rev. 12 (1970), 332-345.
- 4. Carlson, B.C., Dirichlet averages of x t log x, SIAM J. Math. Anal. 18(2) (1987), 550-565.
- 5. Carlson, B.C., A connection between elementary functions and higher transcendental functions, SIAM J. Appl. Math. 17 (1969), 116-140.
- 6. Deora, Y. and Banerji, P.K., Double Dirichlet average of ex using fractional derivatives, J. Fractional Calculus 3 (1993), 81-86.

[Sharma, 4(4): Oct.- Dec., 2014]

- 7. Deora, Y. and Banerji, P.K., Double Dirichlet average and fractional derivatives, Rev.Tec.Ing.Univ. Zulia 16(2) (1993), 157-161.
- 8. Deora, Y, and Banerji, P,K, An Application of Fractional Calculus to the solution of Euler-Darbox equation in terma of Dirichlet average J. of fractional Calculus vol.5, may (1994) 91-94.
- 9. Erdelyi, A., Magnus, W., Oberhettinger, F. and Tricomi , F.G., Tables of Integral Transforms, Vol.2 McGraw-Hill, New York, 1954.
- Faraj Ahmad, Salim Tariq, Sadek Safaa, Ismail Jamal: A Generalization of M-Series and Integral Operator Associated with Fractional Calculus, Asian Journal of Fuzzy and Applied Mathematics, Volume 02 (05), 2014
- 11. Gupta,S.C. and Agrawal, B.M., Dirichlet average and fractional derivatives, J. Indian Acad.Math. 12(1) (1990), 103-115.
- 12. Gupta,S.C. and Agrawal, Double Dirichlet average of ex using fractional derivatives, Ganita Sandesh 5 (1) (1991),47-52.
- 13. Mathai. A.M. and Saxena ,R.K., The H-Function with Applications in Stastistics and other Disciplines, Wiley Halsted, New York, 1978.
- 14. Saxena, R.K., Mathai, A. M. and Haubold, H. J., Unified fractional kinetic equation and a fractional diffusion equation, J. Astrophysics and Space Science 209 (2004), 299-310.
- 15. Sharma, M. and Jain, R., Dirichlet Average and Fractional Derivative, J. Indian Acad. Math.Vol.12, No. 1(1990).
- 16. Sharma, M. and Jain, R., Dirichlet Average of coshx and Fractional Derivative, J. Indian Acad. Math.Vol.2, No. 1(2007). P17-22.
- 17. Sharma, M. And Jain, R.: A Note on a Generalized M-Series as a Special Function of Fractional Calculus, Fract. Calc. Appl. Anal. 12, No.4 (2009) 449-452.